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Path integral treatment of the hydrogen atom in a curved space 
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Department of Physics, State University of New York at Albany, Albany, NY 12222, 
USA 
§ Physikalisches Institut der Universitat Wurzburg, Am Hubland, 8700 Wurzburg, Federal 
Republic of Germany 
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Abstract. The path integral treatment of the hydrogen atom in a hyperbolic space is 
discussed. We show by mapping the radial path integral into the SU(1,l) group manifold 
that the system has a dynamical SU(1, l )  symmetry. The energy spectrum and normalised 
energy eigenfunctions are calculated. In the flat-space limit, the standard hydrogen spectrum 
and corresponding normalised wavefunctions are regained. 

1. Introduction 

Quantum mechanics in a space of constant negative curvature has attracted consider- 
able attention in recent years. A free particle moving in a compact two-dimensional 
hyperbolic space is known in classical dynamics to be a chaotic system [l]. The 
anisotropic Coulomb problem is another example which exhibits a chaotic behaviour 
[2]. The quantisation of such problems is not a simple task. Usually, the quantum 
behaviour of such systems have been analysed semiclassically or numerically via Sel- 
berg’s trace formula [1,2]. It is certainly interesting to study exactly soluble quantum 
mechanical systems in a space of constant negative curvature. 

The purpose of the present paper is to quantise the hydrogen atom in a hyperbolic 
space-a space of constant negative curvature-by path integration. Very recently, we 
have calculated the path integral for the Coulomb problem in a spherical space-a 
space of constant positive curvature-by utilising the SU(1,l) dynamical symmetry of 
the system [3]. Many steps of the present calculation for the negative curvature case 
are similar to those of the previous one for the positive curvature [3]. However, there 
are a number of features different from those of the previous case. Avoiding repetition 
of detailed steps that have been done previously, we wish to explore the new features 
of the hydrogen atom in a hyperbolic space. While the present article is designated 
as part 11: hyperbolic space, the previous paper [3] should be understood as part I :  
spherical space. 

In section 2, we briefly discuss the geometry of a negatively curved space, embed- 
ding it in a four-dimensional Minkowski space. In section 3, we deal with the classical 
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Erlangen, Federal Republic of Germany. 
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dynamics in hyperbolic space. The Coulomb potential and its effect on a classical 
particle is also briefly discussed. It is a remarkable fact that for large angular momenta 
the effective radial potential has no minimum point. Consequently, there is an upper 
limit for the angular momentum of bound states. After the study of classical dynamics, 
we pursue the path integral quantisation on hyperbolic space. First, we perform the 
angular integration. Then we apply a local spacetime transformation to change the 
radial path integral into that of the modified Poschl-Teller potential [4,5]. The modi- 
fied Poschl-Teller oscillator has been shown to have an SU(1,l) dynamical symmetry 
[6] which is now explicitly realised in the path integral by introducing two additional 
angular variables via the dimensional extension technique [7,8]. In this fashion, the 
radial path integral of the hydrogen atom in the hyperbolic space is mapped into that 
of a free particle moving on the dynamical group manifold of SU(1,l). Performing 
the SU(1,l) path integral we then obtain the energy spectrum and normalised wave- 
function; of the Coulomb problem in the negatively curved space. As in the classical 
case, there is in the quantum case an upper limit for the angular momentum of bound 
states. In the flat-space limit, the energy spectrum and the normalised wavefunctions 
of the usual hydrogen atom are obtained. 

2. Geometry of a negatively curved space 

The hyperbolic space we corisider in the present work is a manifold of constant negative 
curvature K = -R-’ < 0. The line element in this space is given in polar coordinates 
as 

ds’ = (1 + r2/R2)-’ dr2 + r2(d02 + sin’ 0 d4’) 
(2.1) 

O s r < c c  O < e < 7 ~  0 1 $ < 2 7 ~ .  

With r = Rsinhx, it can also be put in the form 

ds’ = R’ dx2 + R2 sinh’ x (de’ + sin’ 8 d42). 

In this parametrisation, the metric tensor is 

gij = diag{R2, R’ sinh‘ x ,  R2 sinh’ x sin’ e}. 
The Laplace-Beltrami operator, which is in general defined as A = g- ’ / ’a j (g ’ / ’g ’ ja j )  
with g = det /gijl and g’Jgjk = SL, takes the form 

a a 1 a a 1 d2 
- sin 0 - + - sinh’ x - + 1 

A =  
~2 sinh’ x ax ax RZ sinh2 x sin e ae ae ~2 sinh’ x sin’ e W‘ 

(2.4) 
In the flat-space limit R + 03, it reduces to the standard Laplacian in polar coordinates. 

Spaces of constant curvature in n dimensions can be embedded in a flat space in 
n + 1 dimensions. In the present case we may put the three-dimensional hyperbolic 
space into a four-dimensional Minkowski space by setting [9] 

x0 = R cosh x 
x1 = R sinh x sin 8 sin 4 
x2 = R sinh x sin 8 cos 4 
x3 = R sinh x cos 8. 

(2.5) 
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Obviously, the hyperbolic space may be identified with the upper sheet of the two- 
sheeted hyperbola ( x O ) ~  - (x’)’ - (x2)’ - (x3)’ = R2 > 0 with xo > 0. The line element 
of this space is 

(2.6) 

Note that since the negativly curved space corresponds to a ‘timelike’ hyperboloid in 
Minkowski space, the line element (2.6) is restricted to be ‘spacelike’, ds2 > 0. 

- ds2 = (dx0)2 - (dx’)2 - (dx2)2 - (dx3)*. 

3. The classical Coulomb problem 

The Lagrangian for a particle moving under the influence of a scalar potential is 

9 = (M/2)S2 - V ( r ) .  (3.1) 

For a central potential V ( r )  = V ( x ) ,  the angular momentum is a first integral of the 
Euler-Lagrange equations obtained from (3.1). Due to the conservation of angular 
momentum, the classical particle trajectory lies on a two-dimensional plane. Let the 
angular momentum vector to be in x3 direction (e  = 7c/2), i.e. L = Le, .  The Lagrangian 
then reads 

9 = (MR2/2)(k2 + sinh2xd2) - V(x ) .  

L = M R2 sinh2 x 4 = constant 

(3.2) 

The C/J equation of motion immediately leads to 

(3.3) 

which is the magnitude of the conserved angular momentum. The radial equation of 
motion is 

d 
Ve,(x) MRX = -- 

R ax 
with an effective potential 

The Coulomb potential due to a point charge Q = -Ze2  located at the origin r = 0 
satisfies the equation, 

AV(x)  = -4nQ6(r). (3.5) 

With (2.4), it is easy to show that (3.5) has the following solution?: 

z e2 
V ( x )  = -- (cothx - 1). (3.6) R 

t For x > 0: 

1 d .  d AV(x)  = - ( Z e 2 / R ) -  - smh2 1- cothx = 0. 
RZ sinh2 x dX dX 

For x + 0: 
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Note that an additional constant is included in (3.6) so as to satisfy the limiting 
condition that V ( x )  vanishes as ,y tends to infinity. 

For the Coulomb problem in a hyperbolic space, the effective potential (3.4) takes 
the form, 

(3.7) 

or, in dimensionless units, 

Veff ( x ) / K  = %/ sinh2 x - coth x + 1 (3.8) 

where 

K = Ze2/R (3.9) 

and 1 = L 2 / ( 2 M R 2 ~ )  measures the rotational energy in the scale of the potential 
energy, K. As is shown in figure 1, for 1- > 1/2, the effective potential does not have 
a minimum. Consequently, for large angular momentum the classical Kepler problem 
does not have bound states. For A -= 1/2 the minimum of (3.8) is at xmin = tanh-' 2% 
with Veff (zmin) /~  = -(1/2 - A)*/%. In figure 1 we display the behaviour of Veff(,y)/rc 
for various values of 1. If R is a finite constant, for large x, the Coulomb potential 
behaves like V, , (~ ) /K  - 2(22 - l)e-2x - (A - 1/2)R2/r2. We expect an upper limit for 
the angular momentum of bound states in the quantum problem as well. 

0 0.1 

X 

0.2 

Figure 1. The effective Coulomb potential (3.8) in hyperbolic space for various values 
(a) i = 0.5, ( b )  1 = 5.0 x ( c )  1 = 2.5 x ( d )  1 = 0. 

of 1. 
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4. Path integral quantisation in a hyperbolic space 

Following our previous path integral approach to the hydrogen atom in spherical space 
[3] we consider the promotor 

P( r” , r ’ ; r )  = 1 exp { J ( L  + E )  dr} Dr(t) (4.1) 

from which the energy-dependent Green function G(r”, r’ ; E )  and the propagator 
K(r” ,  r ’ ;  t” - t’) respectively, can be evaluated by the formulae 

ih ‘ S  G ( r ” , r ’ ; E )  = - P(r” , r ’ ; r )dr  (4.2) 

I1 I I’ I K ( r  , r  ; t  - t )  = - 2nh 

In polar coordinates the time sliced version of the path integral (4.1) reads [5] 

P(r” , r ’ ; r )  = N-CC lim 1 fi { &}3’2 exp { W j }  ‘E R3 sinh2 ;cj dXj sin Oj dej d4j  
j = l  j =  1 

(4.4) 

where Wj = l) ( L +  E )  dt is Hamilton’s characteristic function for a short-time interval 
r j  = t j  - fj-l. in the present case it is given by 

M Z e 2  
Wj = -(Asj) + - T,(COthX, - 1) + E r j .  

251 R (4.5) 

We have adopted the standard notation: r, = r ( t j ) ,  t’ = to, t!’ = t N .  
The metric relation (2.1), which holds only locally, cannot be directly used for 

a finite time interval. The short-time version of (2.1) for an n-dimensional space of 
constant negative curvature is [lo] 

  AS^)^ = -2R2(1 - cosho,) - n(n - 2)h2r;/4M2R2. (4.6) 

The last term in (4.6) is due to the curvature and is the same as that of an n-dimensional 
spherical space in magnitude but opposite in sign. In the following we consider only 
the case n = 3. In (4.6) we have also set coshwj = XY-~X~~/R’ ,  where xp is given by 
(2.5) and hence 

cosh U, = cosh x,-~ cosh X, - sinh x , -~  sinh x,( 1 - cos 0]) (4.7) 

with cos 0, = cos Ol cos 
becomes 

+ sin 0, sin cos A$]. The short-time action (4.5) now 

sinh ,yj sinh xj-l (1 - cos ai) M R ~  (coshAXj - 1) + - w. = - M R ~  

‘ j  ‘ j  
I 

z e’ + - rj(cothXj - 1) + R 
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In the above we realise that the curvature correction in (4.6) amounts to a shift of 
the energy scale by a constant term. Therefore, we will set E’ = E - 3h2/8MR2.  
Furthermore, we define, as in section 2, K = Z e ’ / R .  Using the approximation (details 
can be found in [3]) (cosh Axj - 1)  x ; (Axj)’   A AX^)^/^! and replacing the fourth-order 
term by an equivalent one, we obtain the following effective short-time action: 

M R ~  - 
(Axj)’ + - sinh’ xj(l -cos 0,) + Kt,(Cothxj - 1)  + (E’  - h 2 / 8 M R 2 )  t j  w. = - M R ~  

I 2 9  ‘ j  

h 

where sinh2xj = sinhXjsinhxj-,. The angular integration has by now become a 
standard procedure [5,10,11] and one immediately finds 

f f i I  

(4.10) 
I 4  m=-I 

where the radial promotor is given by 

h’-1 

PI(r”,  r ’ ;  T )  = (R3 sinh x’ sinh x’’)-’ lim fi ( -)1’2 MR’ exp { 1 W ! }  dx, (4.1 1) 
j= l  

N-02 2nihtj h J  
j=1 

with 

and 

(4.12) 

(4.13) 

The effective quantum potential V&) of (4.13) with the curvature correction has the 
minimum at xmin = tanh-’ [2AI(1+ l)] : 

V&(xmin) = - ~ [ 1 / 2  - I ( I  + l)A]’/[AI(l + l)] + KA (4.14) 

where A = h 2 / ( 2 M R 2 4 .  As is shown in figure 2, for large x (i.e. for large r ) ,  the 
potential behaves like 

V&(x) N - ~ [ 1 / 2  - I ( /  + 1)A]R2/ r2  + KA.  (4.15) 

The bound states occur only when 

I ( / +  1)A c 1 / 2  (4.16) 

which sets the upper limit for the angular quantum number 1 in a way similar to the 
classical case where ,I c 1/2. 

The radial path integral will be performed in the next section by utilising the 
dynamical symmetry of the system. 
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0 0.1 

X 

0.2 

Figure 2. The effective quantum potential (4.13) in units of K for A = 2.5 x 
angular momenta. (a )  I = 0, ( b )  I = 1, ( c )  I = 2, ( d )  I = 3. 

and various 

5. Realisation of the dynamical SU(1,l) symmetry 

In this section we will perform the integration (4.11) by an explicit realisation of the 
dynamical SU(1,l) symmetry of the Coulomb problem in hyperbolic space. We give 
only the main results as the calculation is similar to that of [3]. 

We perform the local spacetime transformation (xi ,  r j )  --+ (pi, o j )  given by 

h 

e-h = tanh(;yj/2) aj = -(T~ sinh2 P j ) / 4  (5.1) 

with the global time scaling a = -(T sinh p' sinh /?")/4. Under the transformation (5.1) 
the kinetic term of the action (4.12) becomes, when terms of O ( T ' + ~ )  with 6 > 0 are 
neglected, 

[l - cosh(Apj/2)] + (5.2) 
M R ~  M R ~  
2rj 
-   AX^)^ 2: - 

Similarly the measure changes as 

112 N - 1  

(R3 sinh x' sinh I")-' fi (z) fl dx j  
j =  I j = l  

N 112 N - 1  

= - RP3(sinh p' sinh fl (z) dPj. 
j=1 j= l  

(5.3) 
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From (5.1) also follow sinhz = l / s i n h p  and cothz = coshp. Hence the complete 
short-time action in the new space time variables can be written as 

2K - E‘ [ E’ + (21 + 1)2 - 1/4 
2MR2 

h o j -  
M R ~  

s i n h G j  /2) coshGj/2)  
w. J = - [I - cosh(AP,/2)] + 

(5.4) 

This action is formally identical with that of the modified Poschl-Teller potential 
having a dynamical SU(1,l) symmetry [4,5]. 

Setting 

we use the dimensional extension technique [7,8] to introduce two additional angular 
variables 5 and q as in the case of [3]t. Namely, we employ the asymptotic relations 
valid for small oj and integer p and q,  respectively: 

h 112 

exp { - ‘(2‘ 
} = [ MR2cosh2 (p j  /2) ] 

hcosh2(Pj/2) 2nihuj 

h 

x J 2 n  exp {ipASj + (iMR*/haj)cosh2(pj/2)(1 - cosAtj)}dtj (5.6) 

h 1 0  
iMR2sinh2(pj/2) 

h sinh2(pj/2) 

h 

x J2’exp {iqAqj - (iMR2/haj)sinh2(pj/2)(1 - cos AV,)} dq,. (5.7) 

Finally, we change the variables t j  and q j  into Euler angles aj and y j  by 

(5.8) U .  j = 5 .  j /  - q .  Y j = t j + V j  

and 

(5.9) 

For simplicity we set a’ = y’ = 0. Substituting (5.2)-(5.9) into the path integral (4.11) 
gives : 

iha 
PI(r’’ ,r’;T)  = -(2R)-3(sinh/?’’sinhP’)2exp - [(21+ 1 ) 2  - 1/41) { 2MR2 

1 
2n 2n 

x 1 du” 1 dy” exp { ( p  - q)u” + ( p  + q ) y ” }  Q(p”,  p’ ;  U”; y”; a) 
0 - 2 H  

(5.10) 

t Note the misprints in [3]. The expression ( i M R 2 / f i 2 )  in formulae (3.10) and (3.11) should read (iMR*/tlu,). 
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where 

(5.11) 

is an SU(1,l)  path integral [4] expressed in terms of Euler angles (r,P,y) with 

[ 1 - cosh(nj/2)] M R ~  s. = - 
‘ j  

I 
(5.12) 

and 

cosh(nj/2) = cosh2(pj/2) cos[(Aaj + Ayj)/2] - sinh2(flj/2) cos[(Aaj - Ayj)/2]. (5.13) 

In this manner we have realised the dynamical SU(1,l) symmetry of the Coulomb 
problem in the hyperbolic space by changing the radial path integral (4.11) into one 
over the SU(1,l) dynamical group manifold. 

h h 

6. Performing the path integral for the Coulomb problem 

The SU(1,l) path integral (5.1 1) has been evaluated and expressed in terms of SU(1, 1) 
group characters [4,5] : 

Here FJ stands for the orthogonal sum of non-equivalent unitary irreducible represen- 
tations of SU(1,l) of the fundamental series. For the discrete series, which is labelled 
by half-integers J = 0,1/2,1,. . ., the ‘dimension’ of the representation is d, = 2J + 1 
and the constant C, = (h2/2MR2)[(2J + 1)2 - 1/41. Choosing a basis which diagonalises 
the compact generator of SU(1,l)  the character in (6.1) can be written as (a’ = p’ = 0): 

Here the Bargmann functions VL,(/3) play much the same role as the Wigner polyno- 
mials in the representation theory of SU(2) and can be expressed by a hypergeometric 
function (see for example [4]). 

Performing the a” and y” integration in (5.10), we obtain the radial promotor, 

P1(rl’, r ’ ;  T )  = (-1/2R3)(sinh b’ sinh p”)2 exp { - *FR2 [(21+ q2 - (25 + U2] 

(6.3) 
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where $> is now a restricted sum over representations which allow the values p = 
(p - q ) / 2  and v = (p + 4 ) / 2  for the basis states. In the discrete series this means 
C9=oor1/2, where J ,  + 1 = (p-q)/2 and J is either an integer or half-integer depending 
on whether (p - q )  is even or odd, respectively. 

With (dr /do) = -4/(sinh 8’’ sinh p’) the energy-dependent Green function can be 
obtained from (6.3) using (4.2): 

(6.4) 

As in the case of the Coulomb problem in spherical space [3], only the discrete series 
with J = I contributes to (6.4). Note that we have changed the sum over J into one 
over n, = J ,  - J = 0, 1,2,. . . I J,. 

The poles of (6.4) determine the energy spectrum. Since J ,  = n, + I ,  we find 
(p - q)/2 = n, where n = n, + I + 1. With (5.8) the resulting spectrum is 

Z e 2  M Z 2 e 4  (n2 - 1) + - - ___ 
2MR2 R 2A2n2 

h2 E =-- (6.5) 

where n = 1,2,3,. . .. This is identical with that obtained by Infeld and Hull [12] using 
the factorisation method of Schrodinger [13]. 

The energy eigenfunctions corresponding to (6.5) can be found by calculating the 
radial propagator (see (4.3)) : 

where 

(6.7) 

are the normalised wavefunctions and E, = M R Z e 2 / A 2 n .  Note that the energy spectrum 
(6.5) and normalised energy eigenfunctions (6.7) for the Coulomb problem in hyperbolic 
space can also be obtained from the one in spherical space [3] by analytic continuation 
in R --f iR. The Bargmann function in (6.7) is explicitly given by 

x [~inh(P/2)]”+‘~-~‘-~ 2F1 (1 - n + I ,  1 - E ,  + 1 ; 21 + 2; - sinh-*(P/2)). (6.8) 

Using the relations 

e-x ex sinh2(P/2) = ___ c0sh2(/?/2) = ___ 
sinh p 2 sinh x 2 sinh x 

1 sinhx = - 

we can transform the radial wavefunction (6.7) back to the x variable: 

hi(‘) = r(21+ 2) (w 2 r + ~  2 r(i + E ,  + i)r(i + n + I )  l v 2  

r(E, - Z)T(n - I )  ) sinh‘x 

x exp ( -x(n + E,  - 1 - 1)) ,FI (1 - n + 1,l - E, + 1; 21 + 2; 1 - e-2X).  (6.9) 
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Here we have ignored an unimportant constant phase factor appearing in (6.8). 
In the flat-space limit R -+ a~ the energy spectrum (6.5) goes over to the standard 

formula, E,, = - M Z 2 e 4 / 2 f i 2 n 2 .  Similarly, using the following limiting relations with 
a = l i 2 / M Z e 2  and E,, = R / a n :  

lim 2 ~ 1 ( 1  - n + I ,  1 - E , ,  + 1;21+ 2 ;  1 - e-’X) = t ~ , ( l  - n + 1;21+ 2 ; 2 r / a n )  

lim exp ( -x(n  + E ,  - 1 - l ) }  = exp {-) . /an} 
R+w 

R-ra. 

(6.10) 

we obtain the well known flat-space wavefunctions: 

l F l ( l  - n + 1 ; 2 1 + 2 ; 2 r / n a ) .  (6.11) (n + 1 )  ! 

7. Concluding remarks 

In the present work we have explicitly performed the path integral for the hydrogen 
atom in hyperbolic space. This problem has only briefly been discussed by Infeld 
and Hull [12] using the factorisation method. However, a general local spacetime 
transformation in path integrals, 

xj = f ( y j )  t j  = f ’ ( y j - l ) f ’ ( y j ) g j  (7.1) 

x = f ( y )  v(x) = c f ’ ( Y ) ) 1 ’ 2  d y ) .  (7.2) 

corresponds to the following change in the Schrodinger equation : 

Therefore, the radial Schrodinger equation for the Coulomb problem in hyperbolic 
space may easily be transformed into the differential equation of the hypergeometric 
functions by making the replacements, B = -log tanh(~/2)  and W ( X )  = (sinh fl)1/2 q(B). 

On the other hand, as we have shown in this paper, the system under consideration 
has a dynamical SU(1, l )  symmetry. Hence, the algebraisation of this problem may 
also be easily performed. Such a treatment should be very much similar to that of the 
Kepler problem in spherical space [14] (see also [6]). 

There is also another point worth mentioning. In the case of the hydrogen atom 
in spherical space [3], the entire spectrum is discrete. In the flat-space limit the large 
values of n, comparable with R ,  such that n = k R  (k  = constant), degenerate into 
the continuous spectrum E = h 2 k 2 / 2 M .  In the present case, we have considered only 
the bound states belonging to the discrete spectrum. Similar to the classical condition 
A < 112, where A = L 2 / ( 2 M R Z e 2 ) ,  the angular momentum for bound states has the 
upper limit (4.16). Furthermore, with the requirement E,, > V&(xmin) one obtains the 
condition n21(l+ 1) < l / ( 2 A ) 2 .  Together with (4.16) this leads to an upper limit for the 
principal quantum number n :  

n < 1 / f i  (7.3) 
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which is identical to that of Infeld and Hull [12]. Note that the parameter A describes 
the relation between the Bohr radius a = h 2 / ( M Z e 2 )  and the radius of curvature R,  
that is, A = a / 2 R .  

In the spherical case, we have observed previously [3] that only states available 
in the Kepler problem are those corresponding to the discrete spectrum. In the 
limit of vanishing curvature, part of the discrete spectrum degenerates so as to form a 
continuous spectrum extending from zero to infinity. In the hyperbolic case, in addition 
to the discrete states, there are scattering states whose energies form a continuous 
spectrum ranging from h2/(2MR2), which is the contribution of the curvature, to 
infinity. Unlike the spherical case, no part of the discrete spectrum of the hyperbolic 
system contributes to the continuous spectrum in the flat-space limit. The upper bound 
of the angular momentum tends to infinity as the curvature vanishes, so that the 
discrete spectrum of the hyperbolic system generates the entire discrete spectrum of 
the usual flat-space hydrogen atom upon vanishing of curvature. 
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